
Tech Round Table
A briefing on the tech landscape by Red Badger’s
developers and testers

April 2018

Continuous deployment
to production (CDP)

Infrastructure as
Code (IaC)

Pipeline as Code

ReasonML

Machine LearningCSS in JS

Prettier

ELM Elixir

Microplatforms

Headless
Browser Testing

We’ve always been able to say “There’s never been
a better time to be a software developer” because
innovation in software engineering is continually
accelerating. This year, however, it feels even more
so. Two things. Firstly, a very mature Open Source
(OSS) mentality within the industry and secondly,
a huge drive to automate all the things. For the
first time, it seems, it’s now possible to automate
every part of the stack, top to bottom, and to
drive that automation from code that evolves in
the same, agile, way that application code does.
Everything as Code (EaC) is a new mantra.
This evolution of the meta is giving us orders of
magnitude more efficiency and accuracy as we
deliver our products.

Each of the tech we’ve chosen in this Tech
Roundtable drives (or has been driven by) one, or
both, of these concepts (OSS and EaC).

There is a multitude of new and exciting
languages, tools and techniques whose
consistency is driven by global consensus. Finally,
we’re converging as an industry, and it feels great.
Kubernetes, for example, is possibly the fastest
growing open source project of all time and,
together with Docker, forms a new consensus
on container orchestration (see the section on
Microplatforms below).

Anyway, enjoy!

Introduction

New Fully Adopted

A
dd

in
g

Va
lu

e
Ta

ki
ng

 V
al

ue
 A

w
ay

Contents

Infrastructure as
Code (IaC)

Prettier

Microplatforms

CSS in JS

Continuous deployment
to production (CDP)

Machine
Learning

Headless Browser
Testing

Elm

Pipeline as Code

ReasonML

Elixir

Infrastructure
as Code (IaC)

ADDS VALUE • ADOPTING

Back to contents

Setting up IT infrastructure used to involve
screwdrivers; and typing shell commands in
to an appliance using a keyboard attached
to a serial port in a noisy, cold data center.

The processes were slow, expensive, and
very prone to human error. Although disk
imaging helped remove some amount of
repetition, each server had to be manually
configured with the right values to make it
functional and usable. Updates and patches
to these machines also had to be applied
manually, to each machine, and this effort
required dedicated teams. The manual
aspect to all this made it incredibly easy to
end up with ‘Snowflake servers’ - ie servers
that became unique within the estate.

Virtual Machines brought us a long way
forward. Virtual networks even more so.

The dawn of cloud computing hailed in
a range of vendors providing us with a
full offering of Infrastructure as a service
(IaaS): VMs, virtual networks, block storage,
firewalls, load balancers, gateways,
specialised software bundles (e.g. AWS
Lambda), and more. Everything required
to host a stack - anything from a single
application, to a sprawling orchestration

of services - could now be created ‘on-
demand’.

By themselves, cloud platforms do not
change the issues presented by doing
things manually: resources can still, of
course, be manually provisioned and
configured.

Enter stage: declarative Infrastructure as
Code (IaC).

Infrastructure as Code (IaC) is the definition
and management of IT infrastructure
resources in a declarative manner, e.g.
source code.

Declarative IaC has the powerful property
of immutability. The function that applies the
code to the target environment (e.g. a cloud
provider) is deterministic, which makes the
creation of multiple, identical ‘environments’
trivial: for performance testing, security
testing, etc., you can easily provision an
environment that is almost identical to what
your production environment will be. Having
development and production environments
be as-close-as-possible helps to catch
bugs earlier which may only appear in an
integrated environment.

(continued on next page)

Infrastructure as Code (IaC) refers to
the definition and management of IT
infrastructure (e.g. networks, virtual
machines, load balancers, firewalls, etc.)
in a declarative manner, i.e as source code.
Declarative IaC has the powerful property of
immutability: one particular set of inputs (i.e.
version of source code) will only ever produce
one configuration of infrastructure.

As a result, there are business advantages
in terms of speed, risk, and cost; as well as
making it easier to incorporate true DevOps in
to a cross-functional team.

https://martinfowler.com/bliki/SnowflakeServer.html

Infrastructure
as Code (IaC)

Elixir

ADDS VALUE • ADOPTING

Ref: Morris, Infrastructure as Code
Ref: Martin Fowler: Infrastructure as Code

(continued)

Storing infrastructure in code allows us the
same benefits as regular code: immutable
version control (e.g. Git), self-documentation,
peer review, smaller incremental changes,
and more. Version control and peer review
also provide audit trails; which is especially
important to many larger corporate users.

It is not a substitute for proper understanding
of concepts such as networking, load
balancing, scaling, and infrastructure
security. However, IaC does makes these
things far more accessible: bridging the
gap between Dev and Ops, helping to
incorporate and cultivate a [true] DevOps
culture amongst cross-functional teams.

IaC provides us another key benefit:
transparency. The infrastructure that
surrounds our application is no longer
hidden away. There is no more ‘magic’.
Engineers can understand, reason about,
and adapt a configuration far more easily;
which is crucial for when things go wrong.

The benefits of IaC are clear, and we
would recommend it be used in anger
wherever possible. Benefits are brought
both to engineering and the business: IaC
provides a great means for auditing change;

infrastructure can be deployed and changed
faster; there is a lower knowledge overhead;
risk is lowered compared to manually
provisioned infrastructure; and there are
clear cost savings (perhaps no need for a
dedicated infrastructure team).

It is also analogous to other technologies
we’ve explored in this roundtable -
Microplatforms are designed to achieve
many of the same goals; and continuous
deployment to production (CDP) can also
encompass infrastructure.

Looking further ahead, it’s easy to imagine
how IaC might lose prevalence as cloud
platforms provide greater levels of
abstraction for our applications and how we
organise them: orchestrations of containers
(e.g. Kubernetes), and functions as a service
(e.g. AWS Lambda) are great examples of
where most if not all of the infrastructure
concerns are managed for us. However,
most solutions to non-trivial problems will
still require some level of customised setup -
so it’s safe to say that IaC is here to stay. ■

Back to contents

Infrastructure as Code (IaC) refers to
the definition and management of IT
infrastructure (e.g. networks, virtual
machines, load balancers, firewalls, etc.)
in a declarative manner, i.e as source code.
Declarative IaC has the powerful property of
immutability: one particular set of inputs (i.e.
version of source code) will only ever produce
one configuration of infrastructure.

As a result, there are business advantages
in terms of speed, risk, and cost; as well as
making it easier to incorporate true DevOps in
to a cross-functional team.

http://shop.oreilly.com/product/0636920039297.do
https://martinfowler.com/bliki/InfrastructureAsCode.html

Elixir
Elixir is a dynamic, functional language
designed for building scalable and
maintainable applications. It runs on the
battle-tested Erlang VM, known for running
low-latency, distributed and fault-tolerant
systems, and is being successfully used
in both web development and embedded
software.

ADDS VALUE • ADOPTING

Elixir is a dynamic, functional language
designed for building scalable and
maintainable applications.

It runs on the battle-tested Erlang VM and
is underpinned by lightweight processes
communicating via message passing. This
approach, in conjunction with immutable
data structures, allows code to be safely
executed concurrently, scaled within and
across nodes, and supervised for failures.

Fault tolerance in Elixir (and Erlang)
applications is achieved by taking an
approach to error handling that is completely
different to that of most other languages.
In Elixir, errors are accepted as a fact of life
(particularly when dealing with networks, file
systems, and other third-party resources),
and processes are designed to crash
when unexpected errors occur. However,
processes are isolated, so the impact of
crashes is minimised, and supervisors also
ensure that the essential processes are
restarted in a known-good state.

Elixir was created by José Valim, a well-
known rubyist and alumnus of the Ruby on
Rails core team, and its readable syntax
will feel natural to Ruby programmers.

Developers who use the Elixir language
will enjoy its modern features and build
tools, alongside a set of mature libraries
and design patterns that have evolved
from the Erlang community’s 20 years
worth of experience in building robust
applications using the open telephone
platform (OTP) framework.

Another strength of the Elixir ecosystem is
the Phoenix web development framework,
which uses Elixir’s pattern matching and
powerful Lisp-style macro system to
produce expressive and performant code
that can achieve incredible response times
(often measured in microseconds).

On the embedded software front, Nerves
is an increasingly popular library that
packages Elixir applications into a minimal
Linux distribution booting directly to the
Erlang VM. Rather than dropping down to a
low-level systems programming language,
developers can enjoy the productivity
and robustness of Elixir whilst targeting
pretty much any hardware that can run
embedded Linux.

Since our last round table, Elixir and its
ecosystem has continued to mature,

(continued on next page)

Back to contents

Elixir
Elixir is a dynamic, functional language
designed for building scalable and
maintainable applications. It runs on the
battle-tested Erlang VM, known for running
low-latency, distributed and fault-tolerant
systems, and is being successfully used
in both web development and embedded
software.

Headless Browser
Testing

ADDS VALUE • ADOPTING

with new versions of both the language
and the Phoenix framework bringing
continued improvements to the developer
experience. Particularly interesting in the
latest version of Phoenix is the introduction
of “contexts” that guide the architecture
of applications towards business-domain-
focussed modules, which offer some of the
benefits of loosely-coupled microservices
even within a monolithic application. ■

(continued)

Back to contents

Headless
Browser Testing
 It’s a way to run a browser in a headless
environment. Essentially, running Chrome
without chrome! It brings all modern web
platform features provided by Chromium and
the Blink rendering engine to the command
line. Other browsers have followed suit, with
Firefox now offering a headless mode as well.

Machine Learning

Browser testing is important as it helps
to catch issues, which are not easily
reproducible in unit tests. These can range
from security related issues like CORS to
web platform feature support.

Historically, automated browser testing has
been hard. The standard solution has been
to run Selenium, either singly or within a
distributed grid. Selenium brings a common
protocol to run the same tests in different
browsers - even on remote servers. But
running real browsers comes with a cost:

•	 The browser startup is slow.

•	 To run the tests on CI servers you need
additional configuration for a display
server.

To get around these issues we have often
used a headless browser like PhantomJS
instead. This is nice, because it starts faster
and works on CI environments without
further configuration. However, it comes
with other issues:

•	 The browser is not up to date and does
not support the latest web platform
features.

•	 People don’t actually use this browser,
so their experience might differ slightly.

The good news is, that both Chrome and
Firefox have recently added support for a
native headless mode. This means you can
easily get real browsers running with fast
browser startup and zero CI configuration.

In addition we see browsers and the
community developing features and tools
around headless mode:

•	 Chrome and Firefox allow to take
screenshots of a webpage from
command line.

•	 Puppeteer is a very easy to use Node.js
library to control headless Chrome.

•	 Rendertron uses a headless Chrome
inside Docker to provide a rendering
API for modern websites. It can be used
to enable server side rendering for
progressive web apps. ■

ADDS VALUE • NEW

Back to contents

https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
https://developer.mozilla.org/en-US/Firefox/Headless_mode
https://github.com/GoogleChrome/puppeteer
https://github.com/GoogleChrome/rendertron

Machine
Learning

Artificial intelligence has been the topic of
research for decades, and many businesses
have been successfully applying the
methods of machine learning for many
years to solve complex tasks, which
are impossible to tackle with traditional
algorithmic solutions. Typically these are
problems that are easier for a human
than for a computer, requiring human-like
knowledge, like recognising objects in a
picture, driving a car or suggesting a movie
a person might like. Applying machine
learning used to require a lot of specialist
knowledge and custom development, but
it is now becoming commoditised and
accessible to everyone.

The basic principle of machine learning is
building a model of a problem based on
a set of examples, often quite large, in a
process referred to as learning or training.
Machine learning models broadly fall into
two categories: classification models, which
sort the inputs into predefined categories
(e.g. recognise an object in a photo is a
dog) and regression models, which learn
a relationship between different attributes
of a system (e.g. given product information
and your previous purchases, how likely

are you to buy the product). Recently, deep
learning methods, inspired by the structure
of biological neural networks, have become
popular and quite successful at solving
problems previously considered too hard
for a computer to become better at than a
human. A perfect example is the success
of AlphaGo, a program playing the board
game Go, which beat one of the world’s
best players in 2016 and was updated
in 2017 to learn by playing against itself,
rather than from recorded human plays,
surpassing the original in three days.

Machine learning models learn from
examples and require training data to
provide good results. The underlying
mathematical methods work with abstract
numbers and the quality of the predictions
largely depends on the way real-world
inputs are encoded before they are given
to the model. Results returned by a model
will never be perfect - in a sense, machine
learning makes the same kind of mistakes
that humans would make, but often
surpasses humans in quality by several
orders of magnitude. The underlying
structure and mechanics of the models also
have nothing to do with the problems they

ADDS VALUE • ADOPTING

Back to contents

(continued on next page)

Machine learning is the science of getting
computers to act without being
explicitly programmed.

Machine
Learning
Machine learning is the science of getting
computers to act without being
explicitly programmed.

Elm

ADDS VALUE • ADOPTING

Back to contents

are applied to, which makes it quite difficult to
understand the reason for a particular result
and fix specific issues.

Machine Learning is now accessible as a
service from multiple cloud services providers,
both as generic models applicable to bespoke
problems and as services tailored to computer
vision, natural language processing and other
common applications. They provide hardware
acceleration and tight integration with their
large data stores to support machine learning
applications at scale. All of this makes machine
learning easier to use than ever, although
some specialist knowledge is likely to still be
required in order to achieve good results. ■

(continued)

Elm

Elm is a functional language that compiles
to JavaScript. It competes with projects like
React as a tool for creating websites and
web apps. Elm has a very strong emphasis
on simplicity, ease-of-use, and quality tooling.

Evan Czaplicki, the creator of Elm, is
very considered in his approach to its
development. All of the individual pieces of
Elm are very well thought out. What makes
Elm truly amazing is that the whole of Elm is
much better than the sum of its parts.

Elm has a core focus on being easy to
learn. This is embodied in both the getting
started guide and very much the supportive
community around it. The guide is simple
and easy to follow. Public Elm packages are
well documented. Elm’s Slack is alive. This
gives developers a wealth of resource to
draw from when they have questions and
this resource is growing.

Another piece that makes Elm easy to
learn is it’s compiler. Elm’s compiler is
very much an assistant rather than an
adversary. Not only does it detects bugs,
it helps developers understand why. It
gives specific hints that helps developers
write better code. Ultimately, it makes
programming faster and easier.

Elm mitigates classes of problems that in
other languages, developers would need
to think about. For example, Elm does not
allow the use of null or undefined. Instead
it captures this intent in an explicit way the
use of a “Maybe”. By forcing the use of
a “Maybe”, Elm ensures that developers
always handle the “Nothing” case, resulting
in explicit and robust code.

Unlike handwritten JavaScript, Elm code
does not produce runtime exceptions.
Instead Elm uses type inference to detect
problems during compilation and give
friendly hints when compilation fails. Any
problems are resolved during development
and never have the opportunity to make it
in front of end users.

What really intrigues me is what happens
to an Elm project over time. Because Elm
enforces semantic versioning, upgrading
dependencies is relatively trivial, especially
for minor and patch level changes. For
those trickier upgrades, changes and
refactors the compiler has the developers
back and guides them to success. As a
side effect, Elm projects tend to stay more
nimble, enabling development teams to
keep developing without accruing tech debt.

Back to contents

Elm is a pure, functional language that
compiles to JavaScript. It is a delightful
language to build reliable websites and
webapps. It has a very strong emphasis on
simplicity, ease-of-use, and quality tooling.

(continued on next page)

ADDS VALUE • NEW

Elm

ReasonMLBack to contents

Elm is a pure, functional language that
compiles to JavaScript. It is a delightful
language to build reliable websites and
webapps. It has a very strong emphasis on
simplicity, ease-of-use, and quality tooling.

The future of Elm looks bright. The current
roadmap is focused is on creating single-
page apps in Elm. This includes:

•	 Server-side rendering

•	 Tree shaking (trimming out unused code)

•	 Code splitting (cutting up code into
smaller chunks for better caching)

•	 Lazy loading (only sending the code
chunks needed for a particular page)

•	 Expanding web platform support

•	 Unfortunately progress can be
excruciatingly slow and is frustrating for
those waiting. Consideration takes time.
That aside Elm is an amazing tool to build
web applications with. We are definitely
looking for an opportunity to use it when
the right problem comes along. ■

(continued)

ADDS VALUE • NEW

ReasonML

ReasonML is a powerful functional
language built by Facebook, and created
by Jordan Walke who initially created
React. It is not a brand new language, but a
syntax over the language OCaml.

OCaml is a very mature, battle tested
language with extremely fast native
compilation. OCaml provides a functional
syntax, with immutable data structures
and 100% type safety. The first prototypes
of React were actually built in a language
called SML, a distant cousin of OCaml.

Reason provides a syntax on top of OCaml
that caters to developers more familiar with
Javascript, whilst maintaining the powerful
features of the underlying Ocaml language.
Out of the box Reason uses Ocaml’s native
compiler, to compile to bytecode that
can run on a wide variety of platforms. In
addition provides the capability to compile
to Javascript with the help of a tool called
BuckleScript.

Bucklescript is a tool built by Bloomberg
which compiles OCaml or Reason
into readable Javascript with smooth
interoperability with existing Javascript
libraries. In fact due to optimisations

that Bucklescript can make when using
immutable, type safe data structures, code
written in Reason or Ocaml and compiled
by BuckleScript into Javascript can have
better performance out of the box than the
same functionality written in Javascript.

With the tools that Bucklescript provides
incorporated into the language, Reason
can be fully interoperable with existing
Javascript codebases and npm packages.
Using plugins for Babel or Webpack,
Reason can be incrementally introduced
into another Javascript codebase, allowing
developers to gradually introduce Reason’s
benefits over time.

Along with providing a familiar syntax for
Javascript developers, Reason also aims
to provide first class support for React.
Reason React is a separate library that
provides React bindings for use in Reason
applications compiled to Javascript.
Reason React expands on the React
framework and leverages the features of
the Reason language to provide language
level application routing, data management
and component composition. Writing React
applications in Reason using Reason React

Back to contents

ReasonML, created by the same person that
originally created React, is a new syntax
for the OCaml language that is meant to be
welcoming to JavaScript developers. Reason
lets you write simple, fast and quality type
safe code while leveraging both the JavaScript
& OCaml ecosystems.

(continued on next page)

ADDS VALUE • NEW

https://reasonml.github.io/
https://ocaml.org/
https://bucklescript.github.io/
https://reasonml.github.io/reason-react/

ReasonML

Pipeline as CodeBack to contents

ReasonML, created by the same person that
originally created React, is a new syntax
for the OCaml language that is meant to be
welcoming to JavaScript developers. Reason
lets you write simple, fast and quality type
safe code while leveraging both the JavaScript
& OCaml ecosystems.

allows you to build applications that are
safe, statically typed, simple and lean.

By providing a familiar syntax, and
gathering together an ecosystem of tools
and libraries, ReasonML has the potential
to push the Javascript community further
towards functional programming, strong
type safety, immutable data structures
and native compilation with all of the
technical and productivity benefits those
features provide. With its tight integration
with React, Reason might become
the recommended way to write React
applications in the future. ■

(continued)

ADDS VALUE • NEW

Pipeline as Code

Having the build and deployment pipeline
as code (PaC) builds on the benefits of
having Everything as Code (EaC), e.g.
immutable version control, audit trails,
peer reviews, textual representation, and
knowledge sharing. Furthermore, allowing
the product team to control the pipeline
helps to embed professional engineering
practices that help the team understand the
full journey of their artefact, from dev, build
and production deployment.

At a high level, a pipeline consists of three
parts, namely: building and testing the
artefact, assuring quality, and orchestrating
deployment to production. The build
and test stage of the pipeline compiles
the code, runs initial tests (e.g. unit tests,
linting) and outputs an artefact (or library,
module, UI, application, etc) for storage in
a repository. The quality assurance part of
the pipeline may run additional processes
across the codebase - think security,
cyclomatic complexity, bug detection,
code coverage metrics, etc. The final
stage is the orchestration of deployment
to production (through a number of lower
environments - dev, staging, production
for example). The quality assurance stage

also runs against each of the environments
as the deployment is orchestrated. For
example, integration tests are performed
in higher environments, with testing being
performed against more production-like
systems.

PaC provides an point-in-time
representation that describes not only the
functionality of the deployment artefact (i.e.
the actual programming source code), but
how it is built and deployed. This textual
representation, when under control of the
product team, resides within the source
controlled codebase so that any member
of the team (or indeed organisation) can
review, comment upon, and improve.

An additional benefit of having PaC is
that this drives engineers to think beyond
the code that they are writing to the
wider context of how this code will be
used - both from a pipeline and end-
user perspective. Engineers now have
to take into consideration the build and
quality controls that go into professionally
deploying an artefact into production.
This is especially useful when the team
is also on support - ensuring that there

Back to contents

This forms part of the ‘Everything as Code’
evolution, enabling the same code repository
to not only describe and implement the
required functionality (through source code),
but also how this functionality will be built,
tested and deployed to production systems.

(continued on next page)

ADDS VALUE • ADOPTING

Pipeline as Code

Back to contents
Continuous deployment to
production (CDP)

are no knowledge gaps or dependencies
in how the entire application interacts
within the organisation’s technical estate.
More knowledge leads to a more rapid
turnaround time to fix production issues -
as there are no external dependencies to
rely upon - and allows the team to integrate
additional learnings (extra quality controls,
deeper tests) into the pipeline that reduces
errors and include better quality controls. ■

(continued)

ADDS VALUE • ADOPTING

This forms part of the ‘Everything as Code’
evolution, enabling the same code repository
to not only describe and implement the
required functionality (through source code),
but also how this functionality will be built,
tested and deployed to production systems.

Continuous
deployment to
production (CDP)

Continuous integration and continuous
deployment (CI/CD) are well-known
practices which are become more widely
used by tech teams to deliver software.
Quite often, however, these pipelines only
go as far as a QA or Staging environment
where code changes and infrastructure
changes build until such a time as a decision
maker says it’s time to push the button to go
live. Whilst this is great for the development
process you can then hit the same issues
you are trying to avoid during development
in your deployment into production.

Continuous deployment to production
essentially takes these practices and
extrapolates them through to production.
Simply put this means when a feature is
“done” and merged into the master branch
of a repository,the build pipeline kicks in to
run unit tests, test automation suites, and
any other automated quality checks that
you may have in place, eventually ending
with a production deployment.

In order to continuously deliver software
into production, whilst maintaining
quality, it is paramount to ensure that your
entire build and deployment pipeline is

automated. Making small changes little
and often has been proven to help de-risk
deployments. Small changes made in the
morning and deployed in the afternoon,
for example, allow for any issues after
deployment to be easily tracked down,
debugged and fixed quickly although if
your automated checks are designed in the
right way these events will be a rarity.

Having a high level of confidence in what
you are shipping is something that is a
prerequisite for CDP to work, and work
well. If deployments to production only run
every three months, running these scripts,
or in some cases, manual deployment
can be scary, risky and problematic.
Automating this entire process and running
it multiple times a day helps to maintain
confidence in the pipeline resulting in the
triviality of deployments into production.
Immutability in your applications and even
your infrastructure allows for deterministic
deployments which adds another level of
confidence.

The benefits of constantly shipping small
changes to production are not only limited
to the realm of technology. User experience

ADDS VALUE • ADOPTING

Back to contents

Continuous Deployment (CD) is the
process that takes validated Features from
Continuous Integration and deploys them
into the production environment, where they
are tested and readied for release.

(continued on next page)

https://devops.com/continuous-delivery-pipeline/

Continuous
deployment to
production (CDP)

Prettier

ADDS VALUE • ADOPTING

Back to contents

Continuous Deployment (CD) is the
process that takes validated Features from
Continuous Integration and deploys them
into the production environment, where they
are tested and readied for release.

and visual designers also benefit from these
changes as the iteration loop, given your
process, can be significantly reduced allowing
a real measure and learn approach to how
you develop your applications. ■

(continued)

Prettier

Microplatforms

Prettier is an opinionated code formatter.
It was created by James Long to format
modern JavaScript and JSX, inspired by
Go’s gofmt and Reason’s refmt tools. It
now supports typed JavaScript flavours
such as Flow and TypeScript as well as
CSS, Less and SCSS.

Enforcing a consistent code style across
projects makes code easier to read and
understand for all team members. It can be
especially helpful for newcomers unfamiliar
with a project’s codebase. However coming
to a consensus on the style to adopt can be
difficult, sparking seemingly endless “tabs
vs. spaces” type debates that are irrelevant
to the product being built. Policing the
style is also a challenge, resulting in a lot of
“nitpicking” in code reviews.

Static analysis tools such as ESLint can
help flag up style problems alongside other
rules but require extensive configuration
and have very limited ability to fix issues
automatically. Prettier takes a different
approach by taking the maximum line
length into account. It parses the code into
an Abstract Syntax Tree, throwing away
all the original formatting, and reprints it
from scratch using an algorithm based on a
paper by Philip Wadler.

Extensions are available for popular code
editors which can format your code with
Prettier the moment you press “save”,
allowing you to stop worrying about
formatting and focus on application logic.
This is remarkably freeing!

Prettier provides very few configuration
options and requires your team to adopt
its opinionated code style. This may not
match your team’s preferences exactly,
however Prettier’s automatic formatting is
so tremendously useful that it soon wins
you over. Wide adoption of Prettier in
the community is beginning to result in a
consistent code style across many open
source projects.

In existing projects the automatic
formatting of files can sometimes make
pull requests more difficult to understand
and review due to many small formatting
changes alongside logic changes. This can
be mitigated by regularly running Prettier
across the codebase.

Prettier is one of those tools which is so
useful you look back and wonder how you
ever did without it. ■

ADDS VALUE • ADOPTING

Back to contents

Prettier is an opinionated code formatter
with support for multiple languages and
frameworks. It removes all original styling
and ensures that all outputted code is
consistent, increasing readability and
eliminating arguments (think the ‘religious’
wars over tabs vs. spaces).

http://homepages.inf.ed.ac.uk/wadler/papers/prettier/prettier.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/prettier/prettier.pdf

Microplatforms

Until recently it made sense for large
organisations to build shared platforms
by creating teams that, often manually,
provisioned servers, VMs, and supporting
software. It was a high cost activity so it
made sense to amortise that cost across
the business. Now that cloud providers
have mastered infrastructure provisioning
by API, full automation is possible. Today
that time is better invested in writing
code that declaratively specifies what
the platforms, networks and supporting
infrastructure should look like, down to the
last detail. This makes it possible to create
in seconds or minutes what would have
taken months before. Because it’s fast and
declarative, it becomes cheap, repeatable,
reliable and fully auditable.

In the last few years, containers (Docker)
and container orchestrators (Kubernetes)
have pushed that level of automation up
the stack, giving us these same advantages
all the way to our applications and their
individual microservices.

This top to bottom automation now allows
cross-functional teams to create, manage
and destroy environments for their

applications with little effort, saving time
and money, whilst improving on reliability
and reducing MTTR. Their conversations
with the shared “platform teams” move
from “Please can you install MongoDB on
this VM?” to “Please will you accept this
Pull Request?”. Now everyone can take
advantage of the change and there is code
that can be evolved in the community. For
already accepted practices, no coordination
outside the team is necessary.

When everything becomes code, that’s
where the sharing and reuse happens.
That’s where we improve things. And then
we just build and deploy our code to do
those things. Things like creating VMs,
subnets, clusters, service meshes and
microservices. It’s a forward-only paradigm
that always starts with changing source
code. If a subnet needs a bigger CIDR
block, we change the Terraform code and
re-apply it. If a microservice needs an
egress route to a service on the internet,
we change the Istio yaml file and re-apply
that. If a microservice has a bug, we change
its source code and re-apply that (through
the CI/CD pipeline).

Back to contents

(continued on next page)

ADDS VALUE • NEW

Extremely high levels of automation in the
area of infrastructure provisioning and
container orchestration have recently enabled
a capability we are calling microplatforms
- small, and fully capable platforms for
microservices applications. This is a concept
that allows a cross-functional team to
manage, create and destroy (but not modify,
because Immutable Infrastructure) their
own short-lived platforms on which they can
choreograph a collection of microservices.
100% automation (terraform, Dockerfile,
Kubernetes, yaml config etc) ensures
environments are identical, repeatable,
disposable and cheap. The best enabler for
Continuous Deployment into Production we
have seen to date.

https://www.terraform.io/
https://istio.io/

Microplatforms

CSS in JSBack to contents

If we ensure that every time we re-apply our
code, it’s idempotent (i.e. we can apply it
as many times as we like and the net result
will be the same), then we can re-apply
the whole stack if we want to, and only the
things we changed will be replaced.

This is the core concept behind
microplatforms. The ability to splat our
application (and if necessary, it’s supporting
infrastructure) onto a provider-agnostic
“substrate” whenever we want to. We can
create and destroy production-identical,
ephemeral environments to do performance
testing, for example, in minutes. Even
production environments can (and should)
be short-lived. You wouldn’t create
new production environments on every
deployment (there could be hundreds
of those each day), but they would be
recreated as the underlying code evolves
(e.g. a security patch is released).

Microplatforms have a small blast radius,
are cheap to create and destroy, enable
continuous deployment into production,
reduce risk and MTTR, increase reliability
and repeatability, can be managed within the
cross-functional team. They can massively

improve a team’s velocity and help prevent
large organisations from grinding to a halt
behind inter-team dependencies. ■

(continued)

ADDS VALUE • NEW

Extremely high levels of automation in the
area of infrastructure provisioning and
container orchestration have recently enabled
a capability we are calling microplatforms
- small, and fully capable platforms for
microservices applications. This is a concept
that allows a cross-functional team to
manage, create and destroy (but not modify,
because Immutable Infrastructure) their
own short-lived platforms on which they can
choreograph a collection of microservices.
100% automation (terraform, Dockerfile,
Kubernetes, yaml config etc) ensures
environments are identical, repeatable,
disposable and cheap. The best enabler for
Continuous Deployment into Production we
have seen to date.

CSS in JS

When CSS debuted in 1996, the premise
was that content should be divorced from
style, allowing the author to concentrate
on the former, and the end-user (reader)
able to tweak the latter to taste. Comic
Sans became popular not too soon
afterwards, surely related, perhaps the first
real indication that this was in fact a major
mistake..

Fast forward almost two decades to 2014,
when Christoper ‘vjeux’ Chedeau’s gave a
well received 2014 talk on CSS in Javascript,
attempting to fix many of the problems
that resulted from this early decision. A
proliferation of libraries followed, aimed at
improving the styling of component based
applications and once again tying together
content and style more closely together.

By offering a locally scoped alternative to
globally scoped traditional CSS (something
that CSS Modules also give us), we can do
away with many of the naming conventions
(BEM, SMACSS etc) used to combat the
problems caused by global scoping, such
as the accidental overriding of styles. This
results in a significantly simplified developer
experience, being able to ensure that
individual changes do not have unexpected
flow-on effects..

CSS in Javascript libraries largely fall into
two categories - those that make use of
tagged template literals, such as Styled
Components, and those that use built-
in Javascript data structures such as
Glamorous and Styletron.

There is a fair amount of debate within the
Badger camp as to which, or indeed any of
these options are advantageous. Reflecting
this, the current state of CSS in Javascript
is extremely fragmented, with a total of 59
libraries currently listed on Michele Bertoli’s
useful comparison of options available to
React users, a clear winner yet to emerge.

This perhaps explains why Emotion,
despite being relatively recent addition, has
rapidly picked up stars on github, offering
the option of both object and css string
approaches, and wrapper around it’s core
functionality with a Styled Component-like
feel should you wish to use it use it over the
primary ‘css’ function.

Given this flexibility, if you are looking to
give CSS in JS a go, Emotion would probably
be a good place to start in 2018, allowing
you to decide for yourself which approach
to take. ■

ADDS VALUE • ADOPTING

Back to contents

As the name would suggest, this is all about
defining cascading stylesheets in JavaScript.
It provides an abstraction of CSS using
JavaScript as a language to describe styles in
a declarative and maintainable way. The CSS
in JS is compiled either at runtime or server-
side providing high performance with very
low overhead.

http://blog.vjeux.com/2014/javascript/react-css-in-js-nationjs.html
https://github.com/MicheleBertoli/css-in-js
https://github.com/MicheleBertoli/css-in-js
https://emotion.sh/

Founded in 2010 by Cain, Dave and Stu, Red Badger is an
independently owned digital consultancy. On a mission to make
things better for our clients, we’re digital transformation experts
who innovate and deliver. We aim to choose the right tech for
the job and help clients navigate the open source revolution
to increase their speed to market, drive efficiency and deliver
customer value faster.

Interested to find out more?

www.red-badger.com
Say hi to us:
hello@red-badger.com

Our previous roundtables
2017 June

2016

2015 June

2015 March

2013

2012

http://www.red-badger.com
mailto:hello%40red-badger.com?subject=
http://roundtable.red-badger.com/Red_Badger_Tech_Round_Table_June_2017.pdf
https://blog.red-badger.com/blog/2016/02/23/badger-digest-february-2016
https://blog.red-badger.com/blog/2015/06/26/badger-digest-june-2015
https://blog.red-badger.com/blog/2015/04/27/tech-round-table-2015
https://blog.red-badger.com/blog/2013/10/16/tech-round-table-2013-h1
https://blog.red-badger.com/blog/2013/01/28/tech-round-table-2012

